Document ID: ECHO_OpsCon_019

Revision: 2

ECHO Service Registry
Prepared by: Matt Cechini & Dan Pilone
1 Operations Concept

This document describes proposed changes to the ECHO ExtendedServices service. The proposed changes are in response to the EED Task 3 statement of work. Specifically, the following items have been requested:
· Would like to have services better supported in ECHO including the ability to easily discover services for granules and collections.

· Would like to have services support exposed via REST

· Would like better support for service providers to register services in ECHO via PUMP

· Would like to have a mechanism for users to browse services via a well defined keyword structure.

1.1 Background

Currently ECHO has basic services support via the Extended Services Service where service providers can register Service Advertisements, Service GUIs, Services Interfaces, and Service Descriptions. This information can be associated with one or more taxonomy entries. Taxonomies are key-value tags that can represent arbitrary information. By default, ECHO has two sample taxonomies and a taxonomy that is backed by provider and dataset information.

All of ECHO’s service and taxonomy information is then synchronized to a co-located UDDI server and exposed via the UDDI Inquiry API.

In addition to the basic Service and Taxonomy support, ECHO exposes an Invocation Service and Status Service intended to provide basic service calling support and a dynamic mechanism for storing the results of these service calls. While the services are implemented and exposed, to our knowledge no external user has taken advantage of this functionality. No maintenance effort has been invested since their deployment and they are now several generations behind current web service technologies.

To attempt to make services available to end users, two lightweight web applications were developed allowing registration and browsing of services in ECHO. However, since they are not part of the main user workflow (see Improvement Overview below) they were never fully used by end users.

In general, the community dramatically underutilized ECHO’s service support. We believe this is due to at least the following reasons:

· The services capabilities exposed by ECHO were developed before third party services were widely available and were designed to be a catalyst for their development. However, due to lack of maintenance and immediate service provider participation, the capabilities have since been eclipsed.

· The primary (98%) client application for ECHO is WIST, which does not expose services in any manner. Because of this, 98% of our users would be unaware of any services registered with ECHO without going to a service specific web application which was in no way associated with their data searching or access.

· The Invocation and Status services were designed to demonstrate service chaining capabilities but without provider supported services and user visibility, they were never actively used.

· In order to provide standards compliant service discovery ECHO exposes a UDDI based view of our service registry. In addition to the previous bullets, usage of UDDI as a dynamic service discovery mechanism never fully arrived in the industry.

Since the original development of ECHO’s service capabilities the state of service based applications has changed dramatically. Rather than well defined services described using WSDL/SOAP and registered in UDDI servers, the community has moved toward loosely coupled REST or URL based services. Examples of these services are Google’s Map API, OPeNDAP, ESIP OpenSearch, and ECHO’s own REST API.

WSDL/SOAP based services still exist such as OGC/WxS services, however an informal survey of ECHO’s existing providers seems to indicate a heavy bias toward lighter weight services.

In order for new service work in ECHO to be successful, we must achieve several top-level goals:

· Reduce the barrier of entry to registering a service with ECHO

· Dramatically increase the exposure of registered services through data workflows already heavily used by ECHO data users

· Simplify or completely automate the steps required by users to invoke services

· Immediately identify and incorporate key service providers in the service development effort

In order to achieve these goals we will approach the ECHO Services update with the following activities:

· Update PUMP to provide support for registering, updating, and removing services by service providers.

· Update how ECHO stores and associates services to broaden the types of services supported and remove legacy interface/implementation concepts that are unused.

· Provide first class service discovery and use (where possible) in Reverb

1.2 Proposed Changes

The core ECHO Services changes will address four key services capabilities as described by ECHO stakeholders:

1. Service providers should be able to express their offerings via a domain model that allows for service advertisements, service GUIs, service interfaces, and service implementations.

2. Service providers should be able to categorize (tag) their offerings from multiple, potentially changing, perspectives. For example, which datasets a service is compatible with and/or what standards a service complies with.

3. Services should be discoverable and, depending on the nature of the service, potentially invokable through an ECHO client, specifically Reverb.

4. Services should be discoverable programmatically by third party clients. For example, a third party aggregator that can provide service information to its users.

The proposed solution will introduce a refactored ECHO services API, accessible through the existing SOAP API and also the new REST API. The existing data model will be replaced with a simplified object structure. Existing service access methods will be removed, along with the entire TaxonomyService, which will no longer be required. The following service types will continue to be supported.

· ADVERTISEMENT – A basic advertisement for a service that is available for use.

· SERVICE_INTERFACE – An interface defining service capabilities that may be used as a basis for implementing interoperable services and applications. (e.g. OPeNDAP & OpenSearch)

· SERVICE_IMPLEMENTATION – A service that has been implemented and offers a set of concrete capabilities. A SERVICE_IMPLEMENTATION service entry may be built upon a registered ABSTRACT_INTERFACE service entry. (e.g. ECHO-ESIP, which implements the OpenSearch interface)

· GRAPHICAL_USER_INTERFACE – A graphical user interface available for end-users to perform activities on Earth science data. A GRAPHICAL_USER_INTERFACE service entry may be built upon a registered SERVICE_IMPLEMENTATION service entry. (e.g. Reverb, which exposes the ECHO REST API)
In order to support service tagging, a set of “Tag Groups” will be introduced and made available through the ECHO API. There are three types of tag groups which will be supported. They are:

· VIRTUAL – The ECHO System automatically updates the list of valid values available for this type of tag group. (e.g. Datasets)

· MANAGED – The ECHO Operations team manages the list of valid values available for this type of tag group. (e.g. Science Keywords)
· UNMANAGED – There is no value management for this type of tag group. All values are valid. (e.g. generic keyword)
The discovery of services will not be merged with the existing catalog service functionality, meaning that users will not be able to express service searches using AQL, nor will services be returned as a part of the metadata query results. Instead, the new service access methods will provide a series of lookup methods facilitating service discovery.
Historically, ECHO has provided the “Extended Services Registry Tool” to providers who would like to register services within ECHO. This tool will no longer be supported. Instead, ECHO partners will use PUMP to register and manage their services. The “Extended Services Viewer” will no longer be available. Instead, end users will discover services through Reverb, or other ECHO clients.
1.3 Data Partner Impacts

Data partners who have previously registered extended services will need to re-register their services in ECHO. The ECHO Operations team will work with each data partner, as needed.
1.4 Client Partner Impacts

Any client applications currently using the existing ExtendedService service will need to modify their code to utilize the new methods. The legacy service methods will no longer be supported. There are no impacts to WIST. Reverb functionality will be written to leverage the new service capabilities.
2 Services Data Model

The following sections outline the data objects which define services registered within ECHO.
2.1 Service Entry

The ServiceEntry object is the core data model element containing the relevant information about all registered services. Previously, the ECHO data model had four separate objects defining a Service Advertisement, Interface, Implementation, and Graphical User Interface. The proposed structure combines this into a single object. Inter-service relationships (e.g. interface – implementation) are facilitated through tag groups, described later. The ServiceEntry object contains the following fields:
· Guid (String) – Unique identifier for the service entry.

· Provider Guid (String) – The Guid of the provider who has registered this service entry.

· Name (String) – Name of the service entry. This field will be displayed to end users.

· URL (String) – The URL required for accessing the service entry.

· Description (String) – Description of the service being offered. This may be a description of the functionality being exposed, the application registered, etc.

· Type (Enum) - A selected value from the following enumeration:

· ADVERTISEMENT
· ABSTRACT_INTERFACE

· SERVICE_IMPLEMENTATION
· GRAPHICAL_USER_INTERFACE
· Tag Guid(s) – The guid of the tag being associated with the service entry.
2.1.1 Example
· Name – Population Estimation Service

· URL – http://sedac.ciesin.columbia.edu/gpw/wps.jsp

· Description – The Population Estimation Service is a Web-based service for …
· Type – ADVERTISEMENT
· Tag Guid(s) – Guids referencing existing tags. (Details to follow)

2.2 Tag Groups

The TagGroup object has been introduced to contain valid tags which will be referenced by ServiceEntry objects. The TagGroup object contains the following fields. Examples will be included in the next section.
· Guid (String) – Unique identifier for the service tag group.

· Name (String) – Name of the service tag group.

· Description (String) – Description of the service tag group.

· Type (Enum) – A selected value from the following enumeration:

· VIRTUAL
· MANAGED
· UNMANAGED
3 Tag Groups

A new concept for ECHO services is the usage of “Tag Groups” which organizes a list of tags that are used for advanced service entry discovery. Each tag group has a list of tags which may be then associated to a service entry. For instance, in the “Science Keyword” tag group, the associated tags will be all possible science keywords. An ECHO partner registering a service may choose to associate their service with a specific set of science keywords and will do so by associating science keyword tags with their service. Users may then discover this provider’s service entry by asking ECHO to return service entries associated with a science keyword tag.
3.1 Virtual

Virtual tag groups are managed by the ECHO system in order to control the valid tags in the group as other system activity modifies the system objects to which the tags are associated. Changes to a tag groups tags will be made asynchronously with the relevant activity that is adding, removing, or updating the associated value object (e.g. ingest adding new datasets). In order to avoid invalid tag references, a service entry referencing a virtual tag that is removed will also be removed. The following three virtual tag groups have been identified.
In the initial implementation, when a service references a virtual tag that is removed from ECHO, the owner of the service will not be notified that the tag has been removed from their service entry. A separate NCR will be written to track a future enhancement wherein the event notification service may be leveraged to notify service owners.

Due to the volatility of the data from which virtual tags are generated, it is possible that a virtual tags may be regenerated based on system events. To ensure that a virtual tag referencing a specific item has the same unique identifier (Guid) after regeneration, each virtual tag group will utilize a unique naming convention for Guids. The proposed pattern is specified for the following virtual tag groups.
3.1.1 Datasets

The Dataset tag group will allow users to associate a service entry to a listing of ECHO datasets. As collections are ingested and inserted, updated, or deleted, the ECHO system will automatically manage the list of values in this tag group. The tag Guid will be created with the following pattern: <Tag Group ID>_<ShortName>_<VersionId>.
Sample tags in this group are:

· ACES CONTINUOUS DATA V1

· Guid: 1234-1234-1234_aces1cont_1

· CAMEX-4 ER-2 MICROWAVE TEMPERATURE PROFILER V1

· Guid: 1234-1234-1234_c4emtp_1

3.1.2 Service Interfaces

The Service Interfaces tag group will allow users to associate a SERVICE_IMPLEMENTATION service entry to one or more SERVICE_INTERFACE service entries. As ECHO partners add or remove SERVICE_INTERFACE service entries, the ECHO system will automatically manage the list of tags in this tag group. ECHO will not enforce the suggested association between SERVICE_IMPLEMENTATION service entries and SERVICE_INTERFACE tags. The tag Guid will be created with the following pattern: <Tag Group ID>_<Service Interface Guid>.
3.1.3 Service Implementations

The Service Implementations tag group will allow users to associate a GRAPHICAL_USER_INTERFACE service entry to one or more SERVICE_IMPLEMENTATION service entries. As ECHO partners add or remove SERVICE_IMPLEMENTATION service entries, the ECHO system will automatically manage the list of values in this tag group. ECHO will not enforce the suggested association between GRAPHICAL_USER_INTERFACE service entries and SERVICE_IMPLEMENTATION tags. The tag Guid will be created with the following pattern: <Tag Group ID>_<Service Implementation Guid>.
3.2 Managed

Managed tag groups are managed by the ECHO Operations team. The tags in each managed tag group will be derived from external sources and may be modified upon request. Changes to these lists will be coordinated with the ECHO community. In order to avoid invalid tag references, a service entry referencing a managed tag that is removed will also be removed. The following three managed groups have been identified.

In the initial implementation, when a service references a managed tag that is removed from ECHO, the owner of the service will not be notified that the tag has been removed from their service entry. A separate NCR will be written to track a future enhancement wherein the event notification service may be leveraged to notify service owners.

3.2.1 Science Keywords
The Science Keywords tag group will allow users to associate any type of service entry with a science keyword. Valid values for this tag group will be derived from the GCMD managed set of keywords referenced here: http://gcmd.nasa.gov/Resources/valids/archives/GCMD_Science_Keywords.pdf.

Sample tags in this group are:

· Agriculture > Agriculture Engineering > Agriculture Equipment

· Climate Indicators > Humidity Indices > Humidity Index

3.2.2 Service Keywords
The Service Keywords tag group will allow users to associate any type of service entry with a service keyword. Valid values for this tag group will be derived from the GCMD managed set of keywords referenced here: http://gcmd.nasa.gov/Resources/valids/archives/GCMD_Service_Keywords.pdf.

Sample tags in this group are:

· Education/Outreach > Curriculum Support

· Hazards Management > Disaster Response
3.2.3 Interface Style

The Interface Style tag group will allow users to associate any type of service entry with a service interface style. Valid values for this tag group will be derived from current standards and requests from the ECHO community.
Sample tags in this group are:

· REST

· SOAP
3.3 Unmanaged

Unmanaged tag groups do not have a discrete set of tags. To associate an unmanaged service entry with an unmanaged tag, an ECHO client must first discover an existing tag or create a new tag within the associated unmanaged tag group. Duplicate tags will not be allowed. This behavior will not require any coordination to add new tags to a tag group. The following unmanaged group has been identified.

In the initial implementation, ECHO will not remove unused unmanaged tags. An NCR will be written to track a future enhancement wherein the unmanaged tags that have been unused for more than 60 days will be removed from ECHO.

3.3.1 Generic Keyword

The Generic Keyword tag group will allow users to associate any type of service entry with a free form keyword. There will be no restrictions, aside from field length, on tags which will be accepted.
Sample tags in this group are:

· Free Data
· Subsetting
4 API Changes

The following sections outline the new methods that will be made available in the SOAP and REST API. Method return values, parameters, and required ACLs are listed.
4.1 SOAP API

The ExtendedServices SOAP API service will be refreshed with the methods outlined in the following sections.
4.1.1 Service Management
The following methods will facilitate the basic management of services within ECHO.
· CreateServiceEntry (String token, ServiceEntry entry) – Create a new service entry.

· Caller must have CREATE permissions on the EXTENDED_SERVICE provider ACL for the provider that the target service entry belongs to.

· GetServiceEntries(String token, String[] serviceEntryGuids) – Get one or more service entries. A null serviceEntryGuids argument will return all Service Entries.
· Service Entries are accessible to all users without restriction.
· UpdateServiceEntries(String token, ServiceEntry[] serviceEntries) – Update existing service entries.

· Caller must have UPDATE permissions on the EXTENDED_SERVICE provider ACL for the provider which the target service entry belongs to.

· RemoveServiceEntries(String token, String[] serviceEntryGuids) – Remove an existing service entry.

· Caller must have DELETE permissions on the EXTENDED_SERVICE provider ACL for the provider which the target service entry belongs to.

4.1.2 Service Discovery

The following methods will facilitate the service discovery.
· ServiceEntry[] GetServiceEntriesByTagGroup(String token, String tagGroupGuid) – Get the listing of all services associated with the provided tag group.

· Tag group values are accessible to all users without restriction.

· ServiceEntry [] GetServiceEnrtiesByTags(String token, String[] tagGuids) – Get the listing of all services associated with the provided tag Guid(s).

· Tag group values are accessible to all users without restriction.

· ServiceEntry [] GetServiceEntriesByProvider (String token, String providerGuid) – Get the listing of all services associated with the provided provider Guid.

· Tag group values are accessible to all users without restriction.

4.1.3 Tag Management

The following methods will facilitate tag management.
· CreateTagGroup (String token, String name, TagGroupType type) – Create a new managed or unmanaged tag group.

· Caller must have CREATE permissions on the TAG_GROUP system ACL.
· NameGuid[] GetTagGroupNames(String token, TagGroupType[] types)– Get the listing of all tag groups for the specified tag group type(s).

· Tag group values are accessible to all users without restriction.

· RemoveTagGroups (String token, String[] tagGroupGuids) – Remove existing managed or unmanaged tag groups.

· Caller must have DELETE permissions on the TAG_GROUP system ACL. Target tag group must be managed or unmanaged.
· String CreateTag(String token, Tag tag) – Add new tag to an existing managed tag group.

· Caller must have CREATE permissions on the TAG_GROUP system ACL. Target tag group must be managed.
· Tag [] GetTagsByTagGroup(String token, String tagGroupGuid) – Get the listing of all tags for the provided tag group.

· Tags are accessible to all users without restriction.

· Tag GetTagByTagGroupAndValue(String token, String tagGroupGuid, String tagValue) – Find an existing tag within the provided tag group by the tag value.

· Tags are accessible to all users without restriction.

· RemoveTags(String token, String[] tagGuids) – Remove valid values from an existing managed tag group.

· Caller must have UPDATE permissions on the TAG_GROUP system ACL. Target tag group must be managed.
4.2 REST API

The following resources and HTTP methods will be supported on the REST API.
· service_entries – POST, GET

· GET Parameters

· tag_group_type – Gets the service entries for a given set of tag group types. Not required.
· tag_group_guid[] – Gets the service entries for a given set of tag groups. Not required.

· tag_ guid[] – Gets the service entries for a given set of tag s. Not required.

· search_string – Gets the service entries based on a textual search string. Searching is performed against an index of text-based fields and associated tag values indexed from each service object. Not required.

· {service_entry_guid} –GET, PUT, DELETE

· tags – GET, POST
· {tag _guid} –DELETE

· tag_groups –POST, GET
· {tag_group_guid} – GET, DELETE
· tags – POST, GET
· {tag_guid} – GET, DELETE

5 PUMP Changes

There is no existing functionality in PUMP for registering services. Screen shots for the required functionality will be developed and reviewed at a later date.

	Date
	Version
	Brief Description

	9/10/2010
	1
	Initial Internal Draft

	9/15/2010
	2
	Updated REST API methods & addressed minor issues with proposed design.

Table 1 - Document Revision History
1

