ECHO Degraded Service Event
Event Period: 	08/05/12 0200 – 0300 EST (approx)
[bookmark: _GoBack]
Summary
What Happened: ECHO experienced an unexpected outage due to a concurrency issue in Ruby on Rails.
When:
Start of error: 07-17-2012 21:47:02
End of error: 07-17-2012 23:45:51
Start of error: 08-05-2012 02:00:00 (Approx)
End of error: 08-05-2012 03:00:00 (Approx)
 
Duration: Approximately 2.0 hours
Planned Resolution: Patching/Updating of Ruby on Rails
 
Details
On Tuesday, July 17, 2012, between approximately 21:45 and 23:45 EDT ECHO experienced a problem with database connections in the Operational Environment. Our database was timing out on queries and was unable to service incoming requests. We experienced a similar issue overnight on the early morning of 8/5/2012. Both of these incidents were automatically resolved by the system within two hours. Independently, on the first occasion, GHRC reported that updated inventory was not propagating to catalog-rest from legacy ingest. These incidents, upon investigation lead us to track down the problem to a bug in Ruby on Rails when used in conjunction with JRuby. This bug meant that the database connection handling for the new REST API was not thread-safe under heavy load. Our legacy (FTP) based Ingest stores all data it processes in its own set of database tables then forwards the data on to our REST API.  It is this new REST based storage that is used for searching and ordering in ECHO and it is the framework behind this implementation that had a concurrency issue.  Understanding that the problem was rooted within in the application framework itself and was not introduced by any custom code we conducted an audit for other potential inventory discrepancies.
 
Timeline of Events
Starting on 7/17 3:18 PM EDT errors started occurring during indexing of catalog data. By itself, this situation would be completely recoverable by the system without operator intervention.
 
Also around 4:15PM on 7/17, a partner (GHRC) reported that a collection update that had been reported as successful was not reflected properly in Reverb.
 
Later in the evening (7/17), alerts began being issued by our various monitoring systems, specifically, Nagios and Uptrends.com.
 
We began investigating and bounced each of the three Reverb instances which did not correct the state of the system. The database system load appeared fine and no load alarms were reported from any systems.
 
We then shut down one ECHO kernel node and restarted it. This also seemed to make no difference. After preparing to shutdown the 2nd and 3rd kernel nodes of ECHO, we noticed that the system had begun to right itself. Within minutes all systems were fully operational and errors had started to go into recovery. The outage officially ended around 23:45.
 
The following morning, while investigating logs from the outage, we noticed that several database rows had been locked and upon lock expiration the system began self-correcting. No conclusive cause had been determined for why the locks were held in the database for such a long period of time.  ECHO routinely uses database row locking but these locks are short lived and created and removed constantly.
On 7/31, an ECHO developer reported simultaneous ingest pauses in ECHO. These pauses seemed to be related to heavy system load. Reverb was not affected and the ingest processes resumed without intervention.
 
On 8/3, an ECHO team member conducting workload test experienced a problem with Ruby on Rails while putting the ECHO system under heavy load. This error was traced back to a defect in Ruby on Rails related to a non-thread safe implementation of a shared database connection pool when using Ruby on Rails under certain Ruby implementations, specifically JRuby (seehttps://github.com/rails/rails/pull/6398 for more information). After some investigation, we were able to connect this issue to the 7/17/2012 outage and the rogue database locks.  The concurrency issue in the connection pool could cause connections to be terminated or inability to release database row locks, leaving them there until the timeout expires.
 
On 8/5, we experienced an outage similar to the incident on 7/17, this time in the early hours of the morning. This issue also resolved itself within two hours. As this outage occurred between 2 and 3AM EDT, no staff was available to triage the situation.
 
While investigating the data inconsistency  reported by GHRC on 7/17 and the subsequent ingest pauses, we ran some scripts to see how often inventory could have been affected by load issues and the concurrency defect. We discovered and reconciled problems with 37k granules (less than .04% of total inventory was affected). This was determined to be further evidence of these concurrency problems affecting data in ECHO.
 
Mitigations
This outage and its subsequent investigation and observations recommend the following actions:
· Several NCRs (11012624, 11012632, 11013201, and 11013193) have been written to fix the problem in the Ruby on Rails libraries. These fixes have been deployed to Partner Test and Work Load for testing with an anticipated push date of 08/22/2012 to Operations.
· An NCR (11013204) has been written to reconcile inventory that got out of sync. This fix is scheduled to be back-ported to 10.50 as soon as possible.
· An NCR (11013217) has been written to develop a capability to allow for automatic detection of discrepancies in ECHO inventory. 

