
ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

Lessons Learned Regarding WCS Server Design and Implementation

Status of this RFC

This RFC Technical Note provides information on lessons learned from an Open Geospatial
Consortium (OGC) Web Coverage Service (WCS) server design and implementation. This RFC
does not specify an Earth Science Data Systems (ESDS) standard. Distribution of this memo is
unlimited.

Change Explanation

This document is not a revision to an earlier version.

Copyright Notice

Copyright © 2009 United States Government as represented by the Administrator of the National
Aeronautics and Space Administration. No copyright is claimed in the United States under Title
17, U.S. Code. All Other Rights Reserved.

Abstract

This document provides lessons learned regarding a WCS server implementation for the
Coordinated Energy and Water Cycle Observations Project (CEOP) Satellite Data Server, a
NASA ACCESS project that provides a gateway between the Open-source Project for a Network
Data Access Protocol (OPeNDAP) and WCS protocols. The gateway allows a user to use an
OPeNDAP-enabled client to access satellite data held at a WCS server with services such as
subsetting, reprojection, mosaicking and time series support. This project was done as part of the
Committee on Earth Observation Satellites (CEOS) Working Group and Systems and Services
(WGISS) project activity, the WGISS Test Facility for CEOP. This Technical Note presents
several challenges encountered in the design and implementation of the WCS server, mostly
arising from user access patterns, as well as the approaches taken to address those challenges.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

Status of this RFC ... 1
Change Explanation .. 1
Copyright Notice... 1
Abstract ... 1
1 Introduction... 3
2 Design of CEOP Satellite Data Server.. 3
3 Client-driven Issues .. 5
3.1 Length of WCS Request URL ... 5
3.2 Encoding of Special Characters in URL.. 5
3.3 URL Transparency... 6
3.3.1 Lesson learned .. 6
3.4 Choice of Profile .. 6
4 Coordinate Reference System (CRS) Transformation.. 7
4.1 The Necessity of CRS Transformation .. 7
4.2 The WCS Approach to Describing CRST ... 7
4.3 Implementation Options... 7
4.3.1 Lessons learned... 8
5 Mosaicking of Multiple File Granules.. 8
5.1 Lesson learned ... 9
6 Time Stamps ... 9
6.1 Lessons learned.. 10
7 Handling Ancillary Information ... 11
7.1 Quality Screening... 11
7.1.1 Lesson learned .. 11
7.2 Including Ancillary Information in Output Coverages.. 11
7.2.1 Lessons learned... 12
7.3 Provenance Information... 12
8 Scaling and Performance .. 12
9 Conclusions... 13
10 Informative References... 13
11 Authors.. 13
Appendix A - Glossary ... 15

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

1 Introduction

This Technical Note describes lessons regarding a Web Coverage Service (WCS) server
implementation from a NASA ACCESS project to provide a gateway between the Open-source
Project for a Network Data Access Protocol (OPeNDAP) and WCS protocols. The project
developed a data handler for the OPeNDAP server that enabled serving of data obtained from a
WCS server. The aim was to allow access to the data by analysis clients that have OPeNDAP
support but not WCS support. For its part, the WCS server enables the serving of high-resolution
satellite swath data (suitably reprojected to the WCS supported Earth spatial reference system) in
a gridded form intelligible to the OPeNDAP client. A useful byproduct of the gateway
architecture also allows third parties to provide OPeNDAP interfaces to data they do not actually
hold but simply access remotely through WCS.

The project was user-driven, by the Coordinated Enhanced Observing Period (CEOP)
community, which afforded us the opportunity to see how the WCS server implementation
served (or did not serve) the analysis clients employed by those users. This project was done as
part of the Committee on Earth Observation Satellites (CEOS) Working Group on Information
Systems and Services (WGISS) project activity, the WGISS Test Facility for CEOP.

The user input for the project revealed several challenges not normally faced by WCS servers. A
key revelation was the expectation that many of the users in question were likely to want to
analyze long time series of data for very small geographic areas. This contrasts with most WCS
access patterns, which tend to concern short time periods (or even neglect time entirely.) This in
turn raised a number of challenges that rippled throughout many aspects of the project, including
the WCS server design and implementation. In addition, the projected end-user clients, such as
the Gridded Analysis and Display System (GrADS) provided additional constraints and
challenges. Finally, user questions about the content of what they were actually seeing pointed
out the need to consider quality screening and provenance in the WCS server.

The key lessons learned from attempting to serve this time-oriented community with WCS
technologies are relevant to archives contemplating the use of WCS to serve data covering long
time periods (i.e., years) to the science research community. Although some of these lessons may
have implications as to how the OGC WCS protocol might be extended to better serve the
temporal dimension, our primary goal is document our experiences for the benefit of WCS server
implementers .

2 Design of CEOP Satellite Data Server

The CEOP Satellite Data Server was initially designed to include a gateway (middleware)
between a WCS server for NASA satellite data and the OPeNDAP server. However, the
rearchitecture of the new version of the OPeNDAP server, Hyrax, allowed the key gateway
functionality to be implemented instead as a “format handler” in the Hyrax’s Back-end Server
(BES). Figure 1 shows the eventual high level design of the CEOP Satellite Data Server. The
handler can be configured during the installation of the Hyrax server. In addition, significant
customization of the WCS server implementation and configuration was necessary as well and
forms the main basis for the lessons documented in this Technical Note.

The basic process of fulfilling a request is:

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

1) The client submits an OPeNDAP request to the CEOP Satellite Data Server, which is

handled by its front end, the OPeNDAP Light Front End Service (OLFS).

2) the OLFS interacts with local catalog to identify the data source as WCS;

3) the OLFS instructs its BES to set container type to WCS and passes identifying information
about the data to be retrieved;

4) BES formulates a WCS request to the WCS server;

5) BES stores the WCS response to local cache;

6) BES uses the NetCDF format handler to process cached file to satisfy the Data Access
Protocol (DAP) request; and

7) Subsequent DAP requests operate against local cache.

Figure 1. High-level Conceptual Design of the OPeNDAP / WCS Server.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

This document focuses on the design and implementation of the WCS component interfaced to
the CEOP Satellite Data Server. In fact, wo separate WCS servers were implemented, though
sharing a substantial codebase. A WCS server was implemented to serve daily global coverages
of an Atmospheric Infrared Sounder (AIRS) Level 2 Standard Retrieval product (aka
AIRX2RET) with actual CEOP requests focused on CEOP observation sites, essentially 250x250
km squares around CEOP reference sites. Although in theory, this server could respond to
general, arbitrary user WCS requests, its primary purpose was to act as the back end to the CEOP
Satellite Data Server, performing essential reprojection and mosaicking of AIRS Level 2 data,
Thus, the 250x250 km CEOP reference site squares might be thought of as virtual products,
generated on the fly. The global daily coverages presented to the client are actually the virtual
products, as they are not archived in the Goddard Earth Sciences Data and Information Services
Center (GES DISC). The WCS server generates these coverages from individual 6-minute
granule files physically stored in the GES DISC’s operational archive. The second WCS server
was implemented within George Mason University’s GeoBrain environment to serve MODIS
data. In this implementation, individual granules were mapped to coverages.

3 Client-driven Issues

In this project, the end goal was to make the data transparently usable within analysis clients,
such as GrADS. As it happened, this imposed some basic constraints not faced by a WCS server
designed to serve more generic WCS clients, such as commercial ones.

3.1 Length of WCS Request URL

Coverages provided by WCS servers that serve high data volumes are generally based on the
physical data files in server databases or file systems. That is, a server offers one coverage for
one physical file. Our MODIS server is implemented in this approach. Because one MODIS file
usually contains more than one scientific parameter, additional parameter identification is needed
after a physical file name, which itself can be quite long due to inclusion of date and time. This
results in a coverage name dozens of characters long, e.g.:
MOD05_L2.A2004209.0230.005.2007025064844.hdf:Grid:mod05:Water_Vapor_Near_Infrared

The long coverage name, together with other parameters in the WCS GetCoverage request, can
make the request URL too long to be handled by some analysis client software. Note that this
problem is not specific to the WCS protocol, but can become significant when WCS is used as a
component of a distributed workflow.

3.2 Encoding of Special Characters in URL

In addition to the length of URL, special characters included in coverage identification may also
cause problem in application software, for example, characters ‘&’, ‘:’, and ‘%’ in coverage
identification may cause failure of the application software. Again, this becomes a potential
factor when WCS URLs are embedded in distributed workflows for pass-through.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

3.3 URL Transparency

A popular feature in GrADS is the ability to script analysis on large assemblages of files using
“templating”. This requires access handles (filenames or URLs) that are both meaningful and
predictable.

There were actually two servers fielded for this project, which had very different properties with
respect to the transparency of the URLs. The server for MODIS data presents each data file
separately, without mosaicking, while the server for AIRS data uses mosaicking to present each
variable as a global coverage. One issue in the per-file based MODIS server is that the physical
file path and physical file name are exposed in the offered coverage name to the users. This name
includes information which is confusing and opaque to users, such as the inclusion of both
product observation and generation times in such file names as
MOD05_L2.A2002274.0115.005.2006332104856.hdf. Worse, the data observation time requires
an orbit model to predict for a given location, and the data generation time is completely non-
deterministic, thwarting users attempting to script access to multiple coverages. Our users
commented that they prefer service URLs with indicative information such as variable type and
spatial and temporal extents. For the AIRS server providing virtual coverage, the coverage is
simply named using variable name, such as “TSurfAir” for surface air temperature. The URLs
viewed by the users are constructed in the Hyrax server with indicative information included,
such as:
http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/
2002-10-02.html

in which the CEOP reference station name (BRA), variable, and time are clearly presented.

3.3.1 Lesson learned

It is relatively easy and straightforward for the Hyrax server to construct informative URLs for
end users when the WCS server supports virtual coverages. On the other hand, the per-file based
WCS implementation with the physical file name exposed is less than ideal. The near term
solution to this can be to use a logical versus physical file name lookup table to map physical file
name to a more concise and informative logical name and the server can expose a physical file
with its associated logical name. For example, the MODIS file name mentioned in the previous
paragraph can be replaced using a more informative and predictable name such as
MODIS_WaterVapor_20021001.

3.4 Choice of Profile

Most important was the ability of the client to understand the contents of the results. This was the
prime motive for using the NetCDF/CF1 profile in the WCS server: the GrADS clients used by
many CEOP users can open and read NetCDF/CF1 with a single call, as can other clients like
Ferret and Panoply.

http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/2002-10-02.html
http://test.opendap.org:8080/opendap/wcs/CEOP/BRA/ceopL2AIRSTimeOffsetLineage/TSurfAir/2002-10-02.html

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

4 Coordinate Reference System (CRS) Transformation

4.1 The Necessity of CRS Transformation

Many of the data products served are swath data whose values are geometrically aligned with
satellite swath coordinate system, while data users usually need data in earth coordinate,
geographic or projected reference system. CRS transformation (CRST) is therefore necessary in
the gateway. Allowing users to request CRST in a standard way is one of the key advantages
that the OGC WCS protocol provides. In the broad sense, CRST includes any change of the
CRS associated with a dataset, including transformation from satellite swath CRS to
geographic/projected CRS and various reprojections among projected CRSs. Our user
community (i.e., the CEOP scientists) is mostly interested in using the satellite data in
geographic latitude/longitude coordinate reference system. Thus, the CRST implemented in our
server is mainly swath to geographic CRS transformation.

4.2 The WCS Approach to Describing CRST

The WCS specification provides a very simple standard parameter in defining how a CRST
should be done, i.e., CRS. A server lists all the CRSs it can offer in an XML element named
SupportedCRS and a client specifies “CRS=crsValue”, where crsValue must be one of the values
listed in the SupportedCRS element, to specify a desired CRS. Although the CRST itself is
theoretically a geometrical processing of data, it is actually influenced by the nature, or scientific
meaning, of a data product being served, because it is essentially deriving new data values from
input dataset values through interpolation and/or resampling. WCS version 1.0.0 allows clients
to use the InterpolationMethod parameter to specify a method to be used in deriving new values
in desired CRS from input values in input CRS. Three classical digital image processing
interpolation methods, namely nearest neighbor, bilinear, and cubical convolution, are prescribed
in WCS1.0.0. A server may offer one or more of these methods and a client can select any one
of the offered methods.

4.3 Implementation Options

While the WCS protocol defines CRST and related parameters, different servers may select
different approaches to implement a CRST. There are usually two ways to perform satellite
swath to geographic CRST. One is a forward method in which the data points in swath CRS are
mapped to the output geographic CRS and interpolation is performed in the output coordinate
system. The other is a backward method in which the data point coordinate values in the output
grid are mapped backwards to the input swath coordinate values and interpolation is performed
in the swath CRS. In our implementation, we used forward mapping and nearest neighbor
interpolation during the forward mapping. The reason to use forward mapping is that there is no
straightforward way to find swath coordinate values from geographic coordinate values. In our
earlier implementation, we used a polynomial fitting function to derive swath coordinate values
from geographic coordinate values. The polynomial fitting function, usually with an order not
exceeding three, performs faster than point-to-point forward mapping but lacks accuracy at the
edge of a swath, unless multiple fitting functions are used, which will result in additional
mosaicking processing at the boundaries of the valid regions of different functions.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

In addition to the coordinate transformation and interpolation, the output grid point value may
also involve further aggregation, as opposed to resampling, when the request grid cell size is
larger than the input swath cell size. The algorithm is product specific, depending both on the
physical parameter measured and its representation (e.g., numerical vs. categorical). The most
common approach is to average the multiple input data points falling into one output grid cell,
but there are also others such as picking the majority (mode), maximum, or minimum value.
Currently all of our offered coverages are numerical data types and we used an averaging method
to perform aggregation. Further implementation will include the majority rule for nominal
(categorical) data.

4.3.1 Lessons learned

CRST, or georectification/reproject, must be product specific and parameter-specific.
Parameters in the WCS interface protocol are not sufficient to define the difference among
products.

5 Mosaicking of Multiple File Granules

Most currently available WCS servers offer coverages based on physical files, i.e., each physical
file is offered as one coverage. While this is the most straightforward implementation and
reflects a clear one-to-one relationship between a physical file and a coverage, it may not be
desirable when a user’s area of interest exceeds the extent of one single physical file, in which
case multiple requests must be used to get enough data for the interested area and the multiple
returned coverages need to be mosaicked at the client side. The alternative is for a server to offer
a virtual coverage that is not tied with any one single physical file in the server’s file system.
The server dynamically determines which physical files are associated with each client request
and performs mosaicking, when necessary, of data from multiple files. The advantage of this
implementation is that the mosaicking is transparent to clients and the offered coverage can be
described in a very general way. The disadvantage is that it may take much longer for a server to
respond due to the more complicated processing steps involved in the server side. The client
side mosaicking is usually much simpler because the coverages to be mosaicked are already in
the desired geographic CRS. In addition to more complicated processing steps, a server needs to
estimate the memory and speed (i.e., space and time) of the server machine in determining how
general a virtual coverage can be. Limits on spatial and temporal extents may need to be
imposed to make sure the generalization does not exceed server’s capability.

As mentioned earlier, the AIRS WCS server offers virtual coverages where each variable is
offered as a daily coverage whose spatial extents covers the entire globe. Such virtual “global”
coverage may involve many physical files (240 files per days in our AIRS Level 2 product case).
This was refactored from the original implementation of separate, spatially constrained
coverages for each CEOP reference site (there are about 30), which produced scalability
problems in the gateway due to the combinatorially large number of resultant coverages (stations
* parameters * days).

When a client requests an output coverage with a large spatial and temporal extent, the server
may not be able to fulfill the request. To mitigate this, we put a constraint on the temporal extent
of less than one day, from 0-hour to 24-hour. Unfortunately the WCS specification does not

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

define how to describe such a constraint in a machine-understandable way. Our server simply
responds with an exception message when a request crosses the 24-hour boundary. The
message, in free text, is informative to a human user but not machine parsable. In addition to
that on the temporal extent, constraints on spatial extent can also be applied. We used a temporal
constraint because our user’s study areas, the CEOP sites, are globally distributed, allowing a
global spatial extent enables users to request data for any CEOP site. When the WCS server is
integrated with the OPeNDAP Hyrax server, coverages from individual days are assembled into
time series so that a user can request coverages for any CEOP site and at any time length within
the two year (2002-10-01 to 2004-09-30) CEOP observation period.

5.1 Lesson learned

1) It is desirable for a WCS server to provide a virtual coverage service with server-side
mosaicking of multiple physical files on demand. A client need not know the relationship
between the offered coverage and the actual physical files in the server. Such a server capability,
on the other hand, may be at the expense of either the server’s performance or its
spatial/temporal extents, depending on factors such as file size, internal storage and transfer
capability, and encoding.

2) For servers performing on-the-fly-georectification, limits to spatial and temporal extents often
need to be applied due to performance considerations. In our case, this was not so much a
function of exactly which CRSTs were supported. Rather it was a function of the two-year time
period supported, raising the spectre of a global request potentially using as many as 175,000
input swath granules. One issue with applying temporal limitations is that WCS does not have a
machine-parsable way to describe such a limitation to the client.

6 Time Stamps

The WCS specification provides a Time keyword with which a user can define desired temporal
extent for a data product. The keyword is flexible enough to allow specifying either time points
or time periods. It is expected that the output coverage from a server should exactly reflect the
time requirement requested by a user. For example, when a requested time is accurate to a
minute, the values in the output coverage should reflect the measurement of that specific minute,
and when the time is accurate to a day, the value should be a daily measurement. In actual use
scenarios, however, things may become more complicated, depending on the data product being
served. For pre-gridded products such as hourly, daily, and monthly accumulated precipitation,
the server can offer unambiguous time information and a user can obtain coverage with temporal
extent matching exactly with what is requested, such as to specific hour(s) and day(s). However,
for ungeorectified swath data, approximation and customization in terms of time may be
necessary.

With our Level 2 AIRS products, our server offers “daily” coverages allowing a user to request
data for a specific day. However, the observation times for different points in the coverage are
not the same and thus coverage values do not actually represent a daily measurement. That is,
the actual observation times of the swaths that contribute to a 250x250km square vary from day
to day and may even span more than one orbit. In addition, there are both day and night crossings
in many cases. Therefore it is necessary to discuss with the intended users on how the time

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

information can be best represented and used. Our discussions with users led us to group the
observation into two groups, one representing day time and the other night time. Thus, the
output coverage would have a day time component and a night time component, i.e., the
coverage data array has a “time” dimension whose size is 2. Initially, we used the average of day
time observations and average of night time observations to represent the day and night
components of the coverage, respectively. Such average times are not fixed at specific times
during a 24-hour period, but rather change with different spatial locations and days. This
variation is difficult to handle in the GrADS software when constructing time series data for
temporal analyses. After further tests, our users suggested that we use two fixed times, one
09:30 and the other 19:30, to represent day and night components of the output coverage. Since
these are not the actual observation times, an additional data array is needed to record the exact
observation time for each grid point in the returned coverage file. This additional data array may
not be easily used by users.

6.1 Lessons learned

1) There are cases where the WCS coverage specification must be understood differently due to
special data product characteristics. The temporal and spatial dimensions in WCS are assumed
to be perpendicular (or independent). In our swath data product, this assumption is not true. The
spatial location of a coverage grid point changes as time changes. This leaves the WCS
implementor on the horns of a dilemma: in mosaicking, the observation times can be fixed at a
certain granularity (daily in our case), in which case the accuracy of the observation time is
sacrificed. Alternatively, the implementor can fall back to “granule-based” coverages, which
preserve most of the temporal accuracy, but with some loss of usability as noted in section 5.

2) The server provider should consult with intended users to decide how best to represent the
time values in such output coverages. It is possible that different users may have different
requirements and thus different versions of server implementations may be needed. This is
somewhat at odds with the goal of the WCS interoperability, i.e., WCS servers and clients should
be interoperable at machine to machine level without having to make special arrangements
between specific servers and clients. Solving this conundrum would require a more nuanced
representation of time in the WCS specification that can account for the cases where spatial
coverage is covariant with time. At this point, our exercises indicate that a mutual understanding
between service providers and service recipients on product specifics is required for a useful and
usable exchange for applications (such as much scientific research) that are sensitive to temporal
accuracy.

3) Another note about the time dimension in our server is that our current implementation of
dividing day and night components is actually not consistent, in strict understanding of WCS
protocol, with the offered (and also requested) time description. When a client requests one
single time, i.e., a day, our server responds with a coverage having a time dimension of size of 2,
each for day time and night time, respectively. This may cause problems for more general
clients that do not have prior knowledge of the returned coverage. An alternative is to offer two
coverages for each day, a day time coverage and a night time coverage. A client would need to
send two requests and receive two separate coverage files for a specific day. However, this
would degrade the performance at both server and client sides.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

7 Handling Ancillary Information

7.1 Quality Screening

Quality screening is generally product-specific. Though some products have simply good and
bad data, others range up to complicated bitmasks defining different quality attributes. Thus, it is
difficult to define general parameters within the WCS protocol to drive such screening. An
alternative is for the service provider to implement specific screening approaches for the
products being offered. Again, this may sometimes involve intended users because a specific
user (or user community) may have special requirements with respect to data quality. For
example, many of our AIRS variables have different quality levels (e.g., good and best) and
different users may have different criteria. At the implementation level, a service provider may
also have alternatives. For example, a server may pack the quality control values into a coverage
file for users who want to check the qualities themselves. In our implementation, however, we
perform the quality screen at the sever side in the interest of usability and do not provide
additional quality fields to the client. We included in our output coverage all data points that are
not labeled as "do not use" . The criterion can be changed, based on user feedback, in the server
configuration file.

7.1.1 Lesson learned

For scientific research, it is critical that the data be properly screened for quality. The WCS
specification does not account for quality screening, so our approach instead was to implement
server-side screening to eliminate bad quality data. We did not get many comments from our
users on how quality screening should be performed and how QC data should be packed into the
output coverage, partly because our server-side implementation of screening made the process
transparent to them. However, in the long term, the adequacy of this solution needs extensive
usage in real applications, which unfortunately exceeds the project cycle. (With extended
maintenance of the server at the Goddard Earth Sciences Data and Information Services Center,
this user feedback might be obtainable, allowing us to revise our quality approach as necessary.)
Should users require more flexible ways of screening or assessing the quality of data served
through a WCS server, some additions to the protocol might become necessary.

7.2 Including Ancillary Information in Output Coverages

Aside from the per-gridpoint time and quality assurance in the previous discussion, there are
potentially more ancillary fields including viewing and illumination geometry arrays, cloud
percentage, standard deviation, and measurement/retrieval error value. Whether such
information should be included in the output coverage depends on users’ specific needs. A
server has different options to expose such information to users, such as in the coverage
description and metadata. The simplest, most straightforward way for the server is to offer these
ancillary data arrays as coverages in their own right, just as the main variable coverage. For
example, a server may offer land surface temperature and its associated cloud fraction as two
separate coverages. A user needing cloud fraction to evaluate the land surface temperature may
want to acquire both coverages. This implementation can avoid potential difficulties in data
encoding because some data encoding formats do not allow multiple data arrays to be packed

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

into one single file. The drawback to this is that ancillary variables that should be bound to the
main coverage are instead separated from it, complicating data management on the user's side.

7.2.1 Lessons learned

We currently do not include ancillary data arrays in output coverage. However, the output
coverages in our service are already screened using ancillary data information, particularly the
quality control arrays. When required, the WCS server can be revised to also offer ancillary data
coverages so that a user will be able to request such coverages. A potential issue for such an
implementation is that it will require user to link an ancillary coverage with the actual variable
coverage, which may be difficult with many variables and ancillary coverages, especially when
the ancillary coverages are not simultaneously requested with the variable coverage. This places
a burden on the end user, if human, or even the WCS client developer in matching up the proper
ancillary coverage with the variable coverages. In contrast, it is easier for the end user if all
related ancillary data are packed with the variable data in one output physical coverage file. Even
in this case, a number of additional issues arise, such as where in the payload to include the
information where it can be discovered and accessed, as well as how to translate into standard or
conventional units.

7.3 Provenance Information

Early on, it became apparent that service chaining risked the obscuration of the source data and
the processing applied to that data by the services. In our case, for instance, Level 2 swath data
were first quality screened and then reprojected to a geographic grid. These are significant
operations: should anything look "funny" in the data, a user is likely to want to go back to the
original source data for comparison. Indeed, the user is generally not even aware that these
operations have been done. The WCS protocol provides no explicit location for putting this
information. In our demonstration of provenance chaining, we chose to embed the provenance
information in a NetCDF/CF1 attribute (following an ISO 19115 type of structure). While not
the most general solution, it has the virtue that the provenance stays with the data. This approach
is described in more detail in RFC-15.

8 Scaling and Performance

As previously mentioned, we have two versions of WCS, one providing per-file based service
without the on-demand mosaic capability and the other offering virtual coverages that are not
tied to specific physical data files. For the per-file based service, the performance is not an issue
regarding single coverage requests, except for rare cases when a client requests very high
resolution output. (We have internally set certain requirements to prevent such a situation from
happening.) On the other hand, time series studies can translate into a large number of requests
during a short period of time (e.g., hundreds or thousands of simultaneous requests), in which
case some requests may time out as the machine hosting the server slows down or runs out of
memory or temporary disk space. (We have not yet conducted such scaling tests.) For the
version that offers virtual coverage, the server is also at risk of performance problems because it

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

essentially offers unlimited spatial and temporal1 extents. Due to the virtual coverage offering,
scalability is strongly driven by client requests. Theoretically, the server should be able to
provide a coverage that covers the entire spatial and temporal extents, e.g., a single global
coverage from all the available years (two years in our CEOP use case) at nominal spatial and
temporal resolutions (0.25 degree and one-day in CEOP use case). In actuality, our server does
not support such requests. We allow only daily requests, primarily due to the number of files
needed to access at the server side (240 files per day). Currently the temporal scale-up is
provided through the Hyrax server where daily coverages for specific CEOP sites are staged. It
is also possible to configure the WCS server to individual CEOP sites and eliminate the need to
access all physical files. Our current design is to make the WCS general enough but make use of
the scalability of the Hyrax server to meet user’s long time series requirement.

Lesson Learned: The staging of daily coverages from the WCS server in the Hyrax server seems
to be effective: it can provide users with long term time series for different CEOP sites, while
insulating the WCS server from large requests that would seriously impair the WCS machine’s
performance.

9 Conclusions

It would be nice to think that a WCS server can be designed and implemented in a generic sense,
without any consideration of the characteristics of the expected clients and users on the other side.
Indeed, one of the key goals of standardizing protocols such as this is to abstract the user access from the
server implementation. However, our experience seems to indicate that consideration must be given to
those client and user factors in order for the WCS access to be useful to the target community. In
addition to client/user factors, specific characteristics of the datasets to be supported can also exert a
strong influence on the implementation requirements of the server. These characteristics are particularly
exposed when offering long time periods of data to users that have a particular interest in the time
dimension, as is the case with the CEOP users community. While this does not negate the usefulness of
the WCS protocol in such cases, it does point to challenges in the server implementation. Though these
challenges are solvable, they may nonetheless temper expectations for quick adoption of WCS within
the Earth science research community unless user and client influences inform WCS server
implementations.

10 Informative References

 [1] Lynnes, C., Wang., W, Holloway, D., Enloe, Y and M. Min (2008). “Provenance within
Data Interoperability Standards”, ESDS-RFC-015.

11 Authors

The CEOP Satellite Data Server Project Team:

Wenli Yang, George Mason University, wyang1@gmu.edu

1 The temporal extent is actually limited by a product’s temporal availability in the server’s
archive.

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

Christopher Lynnes, NASA GSFC, chris.lynnes@nasa.gov
Daniel Holloway, OPeNDAP.org, d.holloway@opendap.org
Yonsook Enloe, SGT, yonsook@mindspring.com
Min Min, George Mason University, mmin1@gmu.edu

ESDS-RFC-016 Yang, Lynnes, Holloway, Enloe and Min
Category: Technical Note March 2009
Updates: n/a Lessons Learned Regarding WCS Server Design and Implementation

Appendix A - Glossary

ACCESS - Advancing Collaborative Connections for Earth System Science

AIRS – Atmospheric Infrared Sounder

BES – Back-end Server

CEOP – Coordinated Energy and Water Cycle Observations Project

CEOS – Committee on Earth Observation Satellites

CF1 – Climate and Forecast convention, version 1

CRS – Coordinate Reference System

CRST – Coordinate Reference System Transformation

DAP – Data Access Protocol

ESDS – Earth Science Data Systems

GES DISC – Goddard Earth Sciences Data and Information Services Center

GrADS – Gridded Analysis and Display Tool

MODIS – Moderate Resolution Imaging Spectroradiometer

NetCDF – Network Common Data Form

OGC – Open Geospatial Consortium

OLFS – OPeNDAP Lightweight Frontend Server

OPeNDAP – Open-source Project for a Network Data Access Protocol

QC – Quality Control

URL – Universal Reference Locator

WCS – Web Coverage Service

WGISS – Working Group on Information Systems and Services

XML – eXtensible Markup Language

	Status of this RFC
	Change Explanation
	Copyright Notice
	Abstract
	1 Introduction
	2 Design of CEOP Satellite Data Server
	3 Client-driven Issues
	3.1 Length of WCS Request URL
	3.2 Encoding of Special Characters in URL
	3.3 URL Transparency
	3.3.1 Lesson learned

	3.4 Choice of Profile

	4 Coordinate Reference System (CRS) Transformation
	4.1 The Necessity of CRS Transformation
	4.2 The WCS Approach to Describing CRST
	4.3 Implementation Options
	4.3.1 Lessons learned

	Mosaicking of Multiple File Granules
	5.1 Lesson learned

	6 Time Stamps
	6.1 Lessons learned

	7 Handling Ancillary Information
	7.1 Quality Screening
	7.1.1 Lesson learned

	7.2 Including Ancillary Information in Output Coverages
	7.2.1 Lessons learned

	7.3 Provenance Information

	8 Scaling and Performance
	9 Conclusions
	10 Informative References
	11 Authors
	Appendix A - Glossary

